Enantioselective Production of Homochiral (+)-(1R,2S,3S,4S)- and (-)-(1S,2R,3R,4R)-Bicyclo(2.2.1)heptane-2,3-dicarboxylic Acid, 2-Methyl Esters.

Formal Synthesis of the TXA2 Antagonist S-1452.

Ramon Casas and Rosa M. Ortuño*

Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.

(Received 23 July 1992)

Abstract. Both enantiomers of the title half ester have been synthesized from \underline{D} -mannitol as single chiral precursor. The \underline{dextro} -enantiomer is the key intermediate in the synthesis of the TXA2 antagonistic drug S-1452.

Homochiral compounds belonging to the bicyclo(2.2.1)heptane series are useful synthetic building blocks. Several products with pharmaceutical properties possess structures related to this unit, among them carbocyclic analogues of prostaglandin endoperoxides, and the recently discovered drugs which antagonize the action of thromboxane A_2 (TXA2), such as (I) and S-1452. Introduction of the α and β -side chains consists in performing well established chemical transformations from a carboxylic acid or from derived functions. Therefore, the practical synthetic interest lies on developing efficient and stereocontrolled methods to prepare suitable diastereomeric and enantiomeric norbornane half esters. Furthermore, biological activity of those compounds often depends on the absolute and relative configuration of the four chiral centers present in these molecules. 2,4

$$COOH$$

$$NHSO_{2}Ph$$

$$COO Ca 2H_{2}O$$

$$S-1452$$

We have recently reported⁵ that (\underline{Z}) -pentenoate (2), easily synthesized from \underline{D} -mannitol (1),⁶ adds to cyclopentadiene to give the optically pure $(\underline{syn}-\underline{endo})$ -adduct (3) in 85% yield. This is the converse $\underline{syn}/\underline{anti}$ facial

diastereoselectivity respect to that observed in the Diels-Alder cycloadditions involving chiral butenolides such as (5), that can be obtained through acid hydrolysis of ester (2). (Scheme 1).

Thereby, alternative Diels-Alder reaction between cyclopentadiene and ester (2) or lactone (5) provides adducts (3) or (6), which are precursors, respectively, of the enantiomeric bicyclo(2.2.1)heptane half esters (15) and (19), according to the synthetic pathways that we describe in this paper.

CHO
(1)

Ph₃P=CH₂COOMe
ref. 6

CO₂Me

ReONa
MeOH
H₂SO₄
Vref. 6

HO
O
O

(5)

$$X = OH$$
O
O
Ts (7)

Scheme 1

Nal/acetone
97%

Adduct (3) was cleanly epimerized with MeONa/MeOH at room temperature, giving the <u>trans</u>-norbornene derivative (4)⁸ (Scheme 1), which was hydrogenated (Pd-C, 1 atm $\rm H_2$, EtOAc) to afford the saturated compound (12) as a liquid (α)_D -9.2, in 85% yield (two steps) (Scheme 2). Deprotection of the diol by using methanolic HCl, followed by oxidative cleavage by NaIO₄, led to the aldehyde (14). Further oxidation with PDC in DMF at room

temperature⁸ furnished the $(1\underline{S}, 2\underline{R}, 3\underline{R}, 4\underline{R})$ -(half-ester) $(15)^{4,10}$ as a solid, m.p. 53-54 °C, $(\alpha)_D$ -40.1, in 65% overall yield from adduct (3).

The dextro-enantiomer (19) was synthesized following the reaction sequence from adduct (6) depicted in Schemes 1 and 2. The unsaturated alcohol (6) was converted into the solid tosylate (7), m.p. 97-98 °C, in 83% yield. Hydrogenation of the double bond of (7) in the same manner as described above for product (4), followed by treatment with NaI in acetone, gave iodide (11) in 94% yield from (7). Subsequent zinc-acetic acid reduction of (11) gave almost quantitatively the vinyl derivative (16) (Scheme 2). In an alternative shorter way, the saturated alcohol (8) was reacted with PBr₂ in DMF furnishing the bromide (9), which was reduced with zinc in 9:1 isopropanol-water to afford (16) in 75% yield (two steps). Esterification with CH2N2, and epimerization (MeONa/MeOH) gave the transester (18) as a liquid, $(\alpha)_D$ +43.3 . Finally, quantitative oxidation of the double bond of (18) by using catalytic-RuCl3/NaIO4 in wateracetonitrile-carbon tetrachloride at room temperature afforded (1R, 2S, 3S, 4S)-(half-ester) (19), m.p. 52-53 °C, $(\alpha)_D$ +39.1, in 60% overall yield from adduct (6).

(4)
$$\frac{H_2, Pd/C}{95\%}$$
 CO_2Me $MeOH$ CO_2Me $NaIO_4$ $THF-H_2O$ CO_2Me CO_2

Scheme 2

Compound (19) is the chiral key intermediate in the asymmetric synthesis of S-1452, a potent and orally active TXA_2 receptor antagonist, reported by Shionogi Company. In turn, the enantiomer (15) is precursor of other drugs developed by ONO Pharmaceutical such as (I), which is effective not only in inhibiting platelet aggregation, but also in inhibiting an increase in the pressor response caused by various stimulants related to TXA_2 .

Therefore, we have demonstrated that the control of <u>syn/anti</u> and <u>endo/exo</u> stereoselectivity in Diels-Alder reactions involving suitable cyclic or acyclic dienophiles, prepared from D-mannitol as single chiral precursor, offers a versatile and efficient synthetic entry to homochiral bicyclo(2.2.1)heptane-2,3-dicarboxylic acid half-esters with predictable absolute configuration and accessible in high yields.

Acknowledgements. R. C. thanks the Ministerio de Educación y Ciencia for a grant. Financial support from DGICYT through the project PB88-0241 is gratefully acknowledged.

EXPERIMENTAL SECTION

Melting points were determined on a hot stage and are uncorrected. Distillation of small amounts was effected in a bulb-to-bulb distillation apparatus; only the oven temperatures (o.t.) are given. Electron-impact mass spectra were recorded at $70~{\rm eV}$.

(1R, 2R, 3R, 4S)-3-[(4S)-4-(2, 2-Dimethyl-1, 3-dioxolo)] -2-methoxycarbonyl bicyclo(2.2.1)hept-5-ene (4). A solution of ester (3)^{5a} (2.1 g, 8.2 mmol) and MeONa (1.1 g, 21.3 mmol) in anhydrous methanol (60 mL) was stirred at room temperature for 20 h. Then the solvent was removed and the residue was poured into dichloromethane (30 mL). The resultant suspension was washed successively with sat. aqueous NH₄Cl, dried, and evaporated. The residue was chromatographed through silica gel (9:1 hexane-ethyl acetate) to afford some starting material (7% recovery) and compound (4) (1.7 g, 82% yield) as a liquid, o.t. 65 °C (0.08 Torr); (0)_D -70.4 (c=3.61, CHCl₃); IR (film) 1733 cm⁻¹; MS, m/e 252 (M, 1), 237 (32), 194 (26), 129 (22), 117 (78), 97 (20), 91 (27), 66 (100), 59 (20), 43 (76); 400-MHz ¹H NMR (CDCl₃) 61.30 (3 H, s),1.40 (3 H, s), 1.46 (1 H, dd, J=8.7 Hz, J'=1.6 Hz), 1.61 (1 H, d, J=8.7 Hz), 1.64 (1 H, dd, J=5.0 Hz, J'=1.6 Hz), 2.39 (1 H, ddd, J=8.4 Hz, J'= 5.0 Hz, J''=3.4 Hz), 3.0 (1 H, m), 3.06 (1 H, m), 3.48 (1 H, ddd, J=10.1 Hz, J'=7.0 Hz, J''=5.8 Hz), 3.64 (1 H, dd, J=8.1 Hz, J'=7.0 Hz), 3.68 (3 H, s), 3.91 1H, dd, J=8.1 Hz, J'=5.8 Hz), 6.18 (2 H, complex abs.); 20-MHz ¹³C NMR (CDCl₃) 6 25.68, 26.86, 44.43, 46.21, 46.91, 47.00, 48.12, 51.69, 68.41, 79.08, 108.72, 135.85, 136.33, 175.27. Anal. Calcd. for C14H20O4: C, 66.65; H, 7.99. Found: C, 66.75; H, 7.96.

(1s,2R,5s,6s,7R)-5-p-Toluenesulfonyloxymethyl-4-oxatricyclo-(5.2.1.0^{2,6})dec-8-en-3-one (7). A mixture of (6)7b (4.2 g, 23.4 mmol) and tosyl chloride (13.2 g, 69.3 mmol) in anhydrous pyridine (30 mL) was stirred at room temperature for 23 h. Dichloromethane (150 mL) was added and the solution was successively washed with 5% HCl, and dried. The residue was chromatographed on silica gel (2:1 hexane-ethyl acetate) to afford tosylate (7) (6.0 g, 77% yield) as a solid; m.p. 97-98 °C (dichloromethane-hexane); (α) +8.4 (c=1.27, CHCl₃); IR (KBr) 1758, 1590 cm⁻¹; MS, m/e 334 (M, 0.7), 97 (42), 66 (100); 400-MHz H NMR (CDCl₃)

1.43 (1 H, d, J=8.6 Hz), 1.64 (1 H, m), 2.45 (3 H, s), 2.94 (1 H, m), 3.10 (1 H, broad s), 3.20-3.30 (2 H, complex abs.), 4.05 (3 H, complex abs.), 6.18 (1 H, dd, J=5.7 Hz, J'= 3.0 Hz), 6.25 (1 H, dd, J=5.7 Hz, J'=2.9 Hz), 7.34 (2 H, d, J=8.2 Hz), 7.75 (2 H, d, J=8.2 Hz); 20-MHz 13 C NMR (CDCl₃) d 21.50, 42.98, 45.56, 45.77, 48.02, 51.63, 70.42, 78.36, 127.83, 129.93, 132.49, 134.21, 137.09, 145.21, 176.44. Anal. Calcd. for $_{17}^{14}$ H₁₈₀₅S: C, 61.08; H, 5.39; S, 9.58. Found: C, 61.17; H, 5.40; S, 9.49.

(1R, 2R, 5S, 6S, 7S)-5-Hydroxymethyl-4-oxatricyclo(5.2.1.0^{2,6})decan-3-one (8). A solution of unsaturated compound (6) (827 mg, 4.6 mmol) in ethyl acetate (25 mL) was hydrogenated at atmospheric pressure in the presence of 5% palladium on charcoal (98 mg). The catalyst was separated by filtration through celite and the solvent was removed to give a white solid that was purified by flash-chromatography on silica gel (1:1 hexane-ethyl acetate), affording pure saturated product (8) (818 mg, 97% yield); m.p. 72-73 °C (from ether-pentane); (\alpha)_D -55.7 (c=1.88, CHCl₂); IR (KBr) 3600-3150 (broad), 1735 cm⁻¹; MS (CI, NH₃), m/e 217.15 (M+35, 10), 200.20 (M+18, 100), 183.10 (M+1, 8); 400-MHz ¹H NMR (acetone-d₆) 6 1.32-1.52 (6H, complex abs.), 2.34 (1 H, m), 2.47 (1 H, m), 2.69 (1 H, m), 2.90 (1 H, ddd, J=10.3 Hz, J'=5.8 Hz, J''=1.5 Hz), 3.55 (1H, ddd, J=11.9 Hz, J'= 5.5 Hz, J''=3.7 Hz), 3.67 (1 H, ddd, J=11.9 Hz, J'=5.5 Hz, J''=3.5 Hz), 4.14 (1 H, dd, J=J'=5.5 Hz), 4.36 (1 H, m); 100-MHz ¹³C NMR (CDCl₃) 6 22.16, 25.24, 39.56, 40.04, 41.58, 44.56, 47.87, 65.11, 80.70, 179.08. Anal. Calcd. for C10H₁404: C, 65.91; H, 7.74. Found: C, 65.88; H, 7.75.

(1R,2R,5S,6S,7S)-5-Bromomethyl-4-oxatricyclo(5.2.1.0^{2,6})decan-3-one (9) A solution of PBr₃ (2.7 mL, 28.4 mmol) in anhydrous ether (25 mL) was added dropwise to stirred and ice-cooled anhydrous DMF (50 mL) under argon atmosphere. Then, a solution of alcohol (8) (1.3 g, 7.0 mmol) in DMF (18 mL) was subsequently added, the resultant mixture was stirred at 60 °C for 20 h, and then cooled to room temperature. Water (37 mL) was added dropwise and the mixture was extracted with ether (8 x 30 mL). The combined extracts were washed with water (3 x 15 mL) and dried. The solvent was removed and the oily residu was chromatographed on silica gel (4:1 hexane-ethyl acetate) to furnish bromide (9) (1.5 g, 86% yield) as a white solid, m.p. 99-100 °C (from CHCl₃-pentane); (0)_p -56.3 (c=1.35, CHCl₃); IR 1768 cm⁻¹; MS (CI, NH₃), m/e 279.10 and 281.10 (M+35, 18), 262.05 and 264.05 (M+18, 100); 400-MHz H NMR (CDCl₃) of 1.27-1.58 (6 H, complex abs.), 2.39 (1 H, m), 2.50 (1 H, m), 2.67 (1 H, m), 3.00 (1 H, ddd, J=11.6 Hz, J'=6.1 Hz, J'=1.8 Hz), 3.68 (1 H, dd, J=11.0 Hz, J'=4.3 Hz), 3.71 (1H, dd, J=11.0 Hz, J'=4.3 Hz), 4.65 (1 H, m); 20-MHz C NMR (CDCl₃) of 22.4, 25.12, 36.72, 39.61, 40.38, 41.69, 47.51, 47.78, 77.45, 177.34. Anal. Calcd. for C₁₀H₁₃Bro₂: C, 49.00; H, 5.35; Br, 32.60. Found: C, 48.97; H, 5.37; Br, 32.76.

(1R, 2R, 5S, 6S, 7S)-5-p-Toluenesulfonyloxymethyl-4-oxatricyclo-(5.2.1.0², ⁶)decan-3-one (10). This compound was obtained through the same procedure than that described above for the preparation of product (8). Yield: 4.0 g (97%); m.p. 160-161 °C (from CHCl₃-ether); (α)_D -3.6 (c=2.42, CHCl₃); IR (KBr) 1763 cm⁻¹; MS, m/e 151 (100), 85 (23), 83 (35), 67 (33); 400-MHz ¹H NMR (CDCl₃) 6 1.40-1.60 (6 H, complex abs.), 2.38 (1 H, m), 2.43 (3 H, s), 2.64 (1 H, m), 2.66 (1 H, m), 2.98 (1 H, dd, J=11.3 Hz, J'=5.3 Hz), 4.07 (1 H, dd, J=10.5 Hz, J'=3.0 Hz), 4.47 (1 H, m); 7.34 (2 H, d, J=8.2 Hz), 7.75 (2 H, d, J=8.2 Hz); 20-MHz ¹³C NMR (CDCl₃) σ 21.53, 22.03, 25.17, 39.59, 40.05, 41.55, 44.77, 47.11, 71.07, 76.32, 127.82, 129.93, 132.38, 145.22, 177.09. Anal. Calcd. for C₁₇H₂₀O₅S: C, 60.70; H, 5.99; S, 9.53. Found: C, 60.52; H, 5.97; S, 9.47.

 $(1R,2R,5S,6S,7S)-5-Iodomethyl-4-oxatricyclo(5.2.1.0^2,6)$ decan-3-one (11) A solution of tosylate (10) (3.8 g, 11.4 mmol) and sodium iodide (25.8 g)

and the solid residue was poured into water (30 mL) and ethyl acetate (80 mL). The layers were separated and the organic phase was washed successively wit 5% aqueous Na₂S₂O₃ until colorless. The combined aqueous layers were extracted with ethyl acetate (30 mL) and the combined organic extracts were dried and the solvent was evaporated. Column chromatography of the residue on silica gel (hexane-ethyl acetate) furnished iodide (11) (3.1 g (97% yield) as a solid; m.p. 81-82 °C (from chloroform-ethyl acetate-hexane); (α)_D -54.3 (c=2.40, CHCl₃); IR (KBr) 1764 cm⁻¹; MS, m/e 293 (M, 2), 292 (18), 165 (58), 151 (100), 91 (30), 79 (42), 77 (27), 67 (79), 66 (32), 43 (21); 400-MHz lh NMR (CDCl₃) d 1.30-1.70 (6 H, complex abs.), 2.41 (1 H, m), 2.56 (1 H, m), 2.66 (1 H, m), 3.07 (1 H, ddd, J=11.2 Hz, J'=5.6 Hz, J''=1.7 Hz), 3.30 (1 H, dd, J=11.4 Hz, J'=5.3 Hz), 3.35 (1 H, dd, J= 11.4 Hz, J'= 3.6 Hz), 4.38 (1 H, ddd, J=3.6 Hz, J'=6.2 Hz, J''=2.3 Hz); 100-MHz loomer (CDCl₃) d 11.13; 22.58; 25.05; 39.56; 40.47; 41.74; 47.93; 49.14; 77.83; 177.47. Anal. Calcd. for Cl₁OH₁₃IO₂: C, 41.12; H, 4.49: I, 43.45. Found: C, 41.10; H, 4.42; I, 43.08.

(1S,2R,3R,4R)-3-[(4S)-4-(2,2-Dimethyl-1,3-dioxolo)] 2-methoxycarbonylbicyclo(2.2.1)heptane (12). This compound was synthesized following a similar procedure than that described above to prepare (8). Yield: 2.2 g (100%). Product (12) is a liquid, o.t. 95 °C (0.1 Torr); (0)_D -9.2 (c=2.23, CHCl₃); IR (film) 1735 cm⁻¹; MS (CI, NH₃), m/e 272.25 (M+18, 89), 255.30 (M+1, 100); 400-MHz ¹H NMR (CDCl₃) d 1.10 (1 H, m); 1.24 (1 H, m), 1.32 (3 H, s), 1.36 (3 H, s), 1.42 (1 H, m), 1.51-1.60 (3 H, complex abs.), 1.68 (1 H, d, J=5.8 Hz), 2.17 (1 H. m), 2.41-2.46 (2 H, complex abs.), 3.58 (1 H, dd, J=8.0 Hz, J'=7.2 Hz), 3.62 (3 H, s), 3.86 (1 H, ddd, J=10.2 Hz, J'=7.2 Hz, J''=5.7 Hz), 3.98 (1 H, dd, J=8.0 Hz, J'=5.7 Hz); 20-MHz ¹³C NMR (CDCl₃) d 22.30, 25.67, 26.74, 29.18, 37.48, 38.58, 41.28, 47.87, 49.99, 51.46, 68.70, 77.00, 108.69, 174.99. Anal. Calcd. for C₁₄H₂₂O₄: C, 66.12; H, 8.72. Found: C, 66.02; H, 8.72.

(1S,2R,3R,4R)-3- [(1S)-(1,2-Dihydroxyethyl)] -2-methoxycarbonylbicyclo-(2.2.1)heptane (13). A mixture containing ketal (12) (2.3 g, 8.6 mmol), HCl sat. methanol (5 mL), water (8 mL) and methanol (90 mL) was stirred at room temperature for 24 h. The solvent was removed to afford an oil that was chromatographed through silica gel (1:9 hexane-ethyl acetate) to give pure diol (13) (1.8 g, 98% yield), o.t. 160 °C (0.6 Torr), (α)_D-14.2 (c=5.21, CHCl₃); IR (film) 3690-3090 (broad), 1731 cm⁻¹; MS, m/e 183 (31), 156 (51), 151 (100), 124 (20), 95 (27), 67 (87), 55 (20); MS (CI, NH₃), m/e 232.30 (M+18, 100), 215.25 (M+1, 31); 400-MHz ¹H NMR (CDCl₃) σ 1.13 (1 H, m), 1.26 (1 H, m), 1.40-1.46 (2 H, complex abs.), 1.53-1.61 (2 H, complex abs.), 1.77 (1 H, d, J=5.2 Hz), 2.20 (1 H, m), 2.44 (1 H, broad s), 2.52 (1 H, m), 3.35 (0H, broad s), 3.43-3.58 (2 H, complex abs.), 3.65 (3 H, s), 3.69 (1 H, m); 20-MHz ¹³C NMR (CDCl₃) σ 22.19, 29.40, 37.65, 38.00, 41.40, 46.65, 50.21, 51.81, 65.73, 73.15, 176.09. Anal. Calcd. for C₁₁H₁₈O₄: C, 61.66; H, 8.47. Found: C, 61.59,; H, 8.51.

(1S,2R,3R,4R)-3-Formyl-2-methoxycarbonylbicyclo(2.2.1)heptane (14). A suspension of sodium periodate (2.4 g, 11.2 mmol) in water (3 mL) was added dropwise to a stirred solution of diol (13) (1.5 g, 7.3 mmol) in THF (25 mL) and the mixture was stirred at room temperature for 5 h. Then, ether (50 mL) was added and the resultant suspension was filtered. The organic solvents were evaporated and the residue was extracted with dichloromethane (3 x 25 mL). The combined extracts were dried and the solvent was removed to afford an oil that was chromatographed on silica gel (1:1 hexane-ethyl acetate) giving aldehyde (14) (1.3 g, 97% yield); o.t. 60 °C (0.1 Torr); (α)_D +34.7 (c=2.02, CHCl₃); IR (film) 1737 cm⁻¹; MS, m/e 180 (30), 167 (20), 166 (24), 150 (38), 139 (33), 132 (45), 130 (53), 124 (42), 114 (47), 110 (30), 93 (50), 91 (43), 77 (48), 67 (100), 66 (77); MS (CI, NH₃), m/e 217.40 (M+35, 2), 200.25 (M+18, 100), 183.25 (M+1, 6); 400-MHz H NMR (CDCl₃) δ 1.16-1.29 (2 H, complex abs.), 1.32 (1 H, dq, J=10 Hz, J'=1.6

Hz), 1.43 (1 H, m), 1.54-1.62 (2 H, complex abs.). 2.58 (1 H, d, J=4.0 Hz), 2.81 (1 H, m), 2.83 (1 H, dd, J=5.3 Hz, J'=1.6 Hz), 3.20 (1 H, m), 3.66 (3 H, s), 9.72 (1 H, s); 20-MHz 1 C NMR (CDCl₃) of 24.04, 28.88, 38.02, 41.81, 45.33, 51.83, 57.60, 174.73, 201.82. Anal. Calcd. for 1 C Cloud: C, 65.90; H, 7.80.

(1S,2R,3R,4R)-3-Carboxy-2-methoxycarbonylbicyclo(2.2.1)heptane (15). Pyridinium dichromate (3.9 g, 10.4 mmol) was added to a solution of aldehyde (14) (0.8 g, 4.7 mmol) in DMF (35 mL), and the mixture was stirred at room temperature for 26 h. Then, water (80 mL) was added and the resultant aqueous solution was extracted with ether (5 x 30 mL). The combined organic extracts were dried and the solvents were evaporated, giving a residue that was chromatographed on silica gel (7:3 hexane-ethyl acetate) to afford the half-ester (15) (0.6 g, 65% yield), as a solid, m.p. 53-54 °C (from ether-hexane); (α) -54.2 (c=0.96, CHCl₃), and -40.1 (c=0.98, MeOH) (Lit. 0 m.p. 59-60 °C; (α) -38.3 (c=2.01 MeOH), 99.8% ee). Previously undescribed spectra follow. MS (CI, NH₃), m/e 233.25 (M+35, 2), 216.25 (M+18, 100), 199.25 (M+1, 9); 20-MHz 13C NMR (CDCl₃) 6 24.22, 28.85, 38.18, 40.24, 41.74, 48.54, 49.48, 51.95, 174.92, 178.84.

(1R,2R,3S,4S)-2-Carboxy-3-viny1bicyclo(2.2.1)heptane (16). (a) From iodide (11): Glacial acetic acid (10 mL) and zinc dust (3.0 g, 46.3 mmol) were added to a solution of (11) (2.0 g, 7.0 mmol) in ether (60 mL), and the mixture was heated to reflux for 9 h, then filtered through celite. The solvent was removed to give a residue that was chromatographed on silica gel (3:2 hexane-ethyl acetate) affording compound (16) (1.1 g, 99% yield). (b) From bromide (9): A mixture of (9) (3.8 g, 15.6 mmol) and HCl activated zinc dust (60 g, 0.9 mol) in 9:1 n-propanol-water (100 mL) was heated with stirring at 80 °C for 3 h. The solvent was removed and the residue was poured into chloroform (30 mL) and washed with water (2 x 7 mL). The solution was dried and the solvent was evaporated. The residue was chromatographed on silica gel (1:4 hexane-ethyl acetate) to afford (16) (2.3 g, 88% yield). Compound (16) is an oil, o.t. 95 °C (0.6 Torr); (\$\alpha\$) p. -61.1 (c=1.92, CHCl3); IR (film) 3500-2400 (broad), 1705, 1638 cm⁻¹; MS, m/e 167 (M+1, 6), 166 (M, 45), 138 (28), 125 (58), 121 (46), 107 (20), 100 (93), 99 (51), 94 (32), 93 (56), 91 (45), 79 (80), 67 (100), 66 (50), 53 (44), 41 (86); 400-MHz ¹H NMR (CDCl3) d 1.18-1.51 (4 H, complex abs.), 1.61 (1 H, m), 1.82 (1 H, m), 2.15 (1 H, broad s), 2.25 (1 H, broad s), 2.68 (1 H, m), 2.96 (1 H, ddd, J=11.6 Hz, J'=4.2 Hz, J''=1.8 Hz), 4.95 (2 H, complex abs.), 6.00 (1 H, dt, J=16.9 Hz, J'=10.1 Hz), 8.89 (1 H, broad s); 100-MHz ¹³C NMR (CDCl3) d 22.54, 23.62, 40.28, 41.12, 43.88, 45.88, 48.32, 115.93, 138.04, 179.11. Anal. Calcd. for C10H1402: C, 72.26; H, 8.99. Found: C, 72.33; H, 8.55.

(1R,2R,3S,4S)-2-Methoxycarbonyl-3-vinylbicyclo(2.2.1)heptane (17). An ethereal solution of diazomethane was added dropwise to a stirred solution of acid (16) (0.9 g, 5.7 mmol) in ether (40 mL) until persistent yellow colour. The solvent was evaporated and the residue was chromatographed on silica gel (9:1 hexane-ethyl acetate) to afford quantitatively ester (17) (0.9 g) as a liquid o.t. 40 °C (0.05 Torr); (Φ)_D -70.4 (c=1.42, CHCl₃); IR (film) 1737, 1637 cm⁻¹; MS, m/e 180.20 (M, 9), 140 (25), 120 (23), 114 (100), 113 (44), 93 (30), 91 (30), 81 (29), 79 (45), 67 (44); 400-MHz H NRR (acetone-d₆) δ 1.29-1.41 (2 H, complex abs.), 1.41 (1 H, ddd, J=9.6 Hz, J'=J''=1.7 Hz), 1.51 (1 H, m), 1.67 (1 H, m), 1.97 (1 H, m), 2.19 (1 H, broad s), 2.44 (1 H, broad s), 2.74 (1 H, m), 2.90 (1 H, ddd, J=11.6 Hz, J'=3.9 Hz, J''=1.7 Hz), 3.55 (3 H, s), 4.94 (1 H, dd, J=10.0 Hz, J'=2.4 Hz), 4.99 (1 H, ddd, J=16.8 Hz, J'=2.4 Hz, J''=0.6 Hz), 6.05 (1 H, ddd, J=16.8 Hz, J'=J''=10.0 Hz); 20-MHz ¹³C NMR (CDCl₃) δ 22.38, 23.36, 40.18, 40.96, 43.62, 45.86, 48.06, 50.46, 115.38, 137.96, 173.08. Anal. Calcd. for C₁₁H₁₆O₂: C, 73.30; H, 8.95. Found: C, 73.30; H, 9.04.

(1R,2S,3S,4S)-3-carboxy-2-methoxycarbonylbicyclo(2.2.1)heptane (19) through compound (18). (1R,2S,3S,4S)-2-Methoxycarbonyl-3-vinylbicyclo-(2.2.1)heptane (18) was obtained by epimerization of ester (17) following a similar method than that described above for the epimerization of (3); yield: 390 mg (90%); b.p. 50 °C (0.2 Torr); (α)_D +43.3 (c=2.63, CHCl₃); IR (film) 1732, 1639 cm⁻¹; MS, m/e 180 (M, 6), 139 (27), 121 (44), 120 (51), 114 (21), 113 (100), 91 (37), 81 (43), 79 (50), 67 (41), 53 (32); 400-MHz H NMR (CDCl₃) of 1.14-1.28 (3 H, complex abs.), 1.46-1.58 (3 H, complex abs.), 2.02 (1 H, d, J=5.5 Hz), 2.19 (1 H, m), 2.41 (1 H, m), 2.72 (1 H, m), 3.58 (3 H, s), 4.99-5.04 (2 H, complex abs.), 5.77 (1 H, ddd, J=17.1 Hz, J'=10.4 Hz, J''=6.7 Hz); 20-MHz 13C NMR (CDCl₃) of 22.67, 29.83, 38.00, 41.61, 41.81, 48.62, 51.57, 115.33, 133.30, 175.79.

To a solution of (18) (96 mg, 0.53 mmol) in 4:3:3 water-acetonitrile-carbon tetrachloride (10 ml) sodium periodate (513 mg, 2.4 mmol) and

To a solution of (18) (96 mg, 0.53 mmol) in 4:3:3 water-acetonitrile-carbon tetrachloride (10 mL) sodium periodate (513 mg, 2.4 mmol) and ruthenium trichloride hydrate (13 mg) were successively added. The resultant black solution was stirred at room temperature for 6 h and then ether (20 mL) was added and the mixture was stirred for 10 minutes. The layers were separated and the aqueous phase was extracted with ether (2 x 20 mL); the combined extracts were washed with sat. aqueous NaCl (10 mL), dried, and the solvents were removed. The residue was chromatographed on silica gel (1:1 hexane-ethyl acetate) affording quantitatively half-ester (19) (108 mg); m.p. 52-53 °C (hexane); (α)_D +39.0 (c=0.87, MeOH) (Lit. m.p. 59-60 °C; (α)_D 38.4 (c=2.00, MeOH) 97.4% ee).

NOTES AND REFERENCES

- & This work has been presented at the "Ninth International Conference on Organic Synthesis, ICOS 9" held in Montréal, Canada, on June 28-July 2, 1992.
- Helmchen, G.; Karge, R.; Weetman, J. in Modern Synthetic Methods; Scheffold, R., Ed.; Springer Verlag, Berlin, 1986; Vol. 4.
- 2. (a) Taylor, R. J. K.. in New Synthetic Routes to Prostaglandins and Thromboxanes; Roberts, S. M. and Sheinmann, F., Eds.; Academic Press, New York, 1982. (b) Larock, R. C.; Hsu, M. H.; Narayama, K. Tetrahedron 1987, 43, 2891.
- Ohtani, M.; Matsura, T.; Watanabe, F.; Narisada, M. J. Org. Chem. 1991, 56, 2122.
- Hamanaka, N.; Seko, T.; Miyakazi, T.; Naka, M.; Furuta, K.; Yamamoto, H. <u>Tetrahedron</u> <u>Lett.</u> 1989, 30, 2399.
- 5. (a) Casas, R.; Parella, T.; Branchadell, V.; Oliva, A.; Ortuño, R. M. Guingant, A. <u>Tetrahedron</u>, 1992, 48, 2659. (b) Chen, Z.; Ortuño, R. M. <u>Tetrahedron</u>: Asymmetry 1992, 3, 621.
- 6. Mann, J.; Partlett, N. K.; Thomas, A. <u>J. Chem. Res.</u> (S) 1987, 369, and references therein. Enoate (2) is commercially available from Aldrich.
- (a) Ortuño, R. M.; Ballesteros, M.; Corbera, J.; Sánchez-Ferrando, F.; Font, J. <u>Tetrahedron</u> 1988, 45, 4625. (b) Batllori, R.; Font, J.; Monsalvatje, M.; Ortuño, R. M.; Sánchez-Ferrando, F. <u>Tetrahedron</u> 1989 45, 1833.
- 8. Corey, E. J.; Schmidt, G. Tetrahedron Lett. 1979, 399.
- 9. Carlsen, H. J.; Katsuki, T.; Martín, V. S.; Sharpless, K. B. <u>J. Org.</u> <u>Chem.</u> **1981**, <u>43</u>, 2981.
- 10. Ohtani, M.; Matsuura, T.; Watanabe, F.; Narisada, M. <u>J. Org. Chem.</u> 1991, 56, 4120.